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Counting defects in an instantaneous quench

D. Ibaceta* and E. Calzetta†

Department of Physics and Instituto de Astronomia y Fı´sica del Espacio, University of Buenos Aires, Buenos Aires, Argentina
~Received 9 October 1998!

We consider the formation of defects in a nonequilibrium second-order phase transition induced by an
instantaneous quench to zero temperature in a type II superconductor. We perform a full nonlinear simulation
where we follow the evolution in time of the local order parameter field. We determine how far into the phase
transition theoretical estimates of the defect density based on the Gaussian approximation yield a reliable
prediction for the actual density. We also characterize quantitatively some aspects of the out of equilibrium
phase transition.@S1063-651X~99!09408-8#

PACS number~s!: 05.70.Fh, 11.27.1d, 11.10.Wx, 67.40.Vs
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I. INTRODUCTION

The objective of this paper is to study the formation
defects in a nonequilibrium second-order phase transition
means of a numerical solution of the full dynamical equ
tions, and to compare the results with theoretical predicti
to be found in the literature@1–3#. Topological defects are a
common occurrence in symmetry broken field theories@4#,
with far reaching consequences in condensed matter phy
@5#, particle physics@6,7#, and cosmology@8#. The equilib-
rium structure of defects is deeply rooted in the topologi
aspects of the theory, and is well understood. The dynam
formation of defects in the process of a nonequilibrium ph
transition, on the other hand, only recently has been the
ject of a systematic analysis.

The issue at stake is how many defects are to be form
as a function of both the dynamics of the system and
macroscopic parameters characterizing the transition, suc
cooling rates. A simple, order of magnitude, estimate
based on the observation that once the system is
enough, defects will be unable either to form or disapp
through thermal activation, so they will be essentially froz
into existence. This happens at the so-called Ginzburg t
perature, and leads to the prediction that the typical dista
between defects is of the order of magnitude of the corr
tion length at this temperature@9#.

This picture of defect dynamics has been criticized
Zurek and co-workers as downplaying the nonequilibriu
features of the process@10,11#. According to these authors
the freezing of defects occurs at a much higher temperat
when the relaxation time of the system becomes large
the system effectively decouples from its environment. Th
arguments usually lead to higher defect densities than fo
previously, a prediction confirmed by some experime
@12,13# ~see, however, Ref.@14#!. They are also supported b
numerical simulations in one- and two-dimension
Ginzburg-Landau systems with broken global symmetr
@15#.

Complementary to the search for a qualitative understa
ing of defect formation, some authors have attempted to
rive the density of defects from a first-principles descripti
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of the dynamics. As a matter of fact, there is a rigorous re
linking the density of defects to the equal time correlati
function for the order parameter, valid whenever the fie
probability distribution is Gaussian@1,2#. Under the Gauss-
ian approximation, then, finding the density of defects is
duced to solving the dynamics for the correlation functi
@3#. This approach, which has recently been used to show
validity of Zurek and co-workers estimates in a quantu
field theoretic model@16#, is usually though to be correc
early in the development of the phase transition@17#.

In order to evaluate how reliable this kind of argume
really is, therefore, we must know how far in the phase tr
sition the Gaussian approximation may be trusted. Since
development of the phase transition is an essentially non
ear process, we must expect that non-Gaussian correla
will be created by the dynamics itself, even if suppressed
the initial conditions. There will be a competition betwee
the characteristic growth time due to the spinodal instabi
@18,19#, and a variety of dynamical times describing th
building of correlations through nonlinear interaction of flu
tuations; however, the usual Gaussian models do not giv
a clue about what the latter might be.

The objective of this paper is to give a tentative answe
the question of the reliability of defect density estimat
based on the Gaussian approximation, by presenting a f
nonlinear simulation of a phase transition where we ha
measured the Gaussianity of the order parameter, the Ga
ian prediction for the density of defects, and the actual d
sity, as functions of time. Of course, as long as the field
actually Gaussian, the rigorous analytic prediction for t
defect density is validated. The nontrivial issue is how lo
the field probability density remains Gaussian, and whet
the Gaussian prediction continues to hold beyond that po
Concretely, we find that even when Gaussianity of the
semble ceases to hold, the prediction remains valid, to br
down about the time defects are definitely formed.

Our simulations follow the unfolding of an instantaneo
quench to zero temperature in a two-dimensional type-II
perconductor, described by the time-dependent Land
Ginzburg equations derived by Gor’kov and Eliashberg@20#
~see also Refs.@21–24#!. This model is a scalar field theor
interacting with a U~1! gauge field~see Ref.@11#!, but with
the presence of a normal current, in addition to the super
rent, and a first order~rather than second one! equation for
the vector potentialA ~see below!.

In order to perform the simulations, we have discretiz
the model and placed it on a square lattice, with perio
2999 © 1999 The American Physical Society
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3000 PRE 60D. IBACETA AND E. CALZETTA
boundary conditions. Our discrete model still has gauge s
metry, which is preserved by the evolution. We have furt
considered a variety of lattice sizes and initial conditio
thus making sure that our results truly reflect the physics
the system. We have identified defects by measuring
winding number of the field around each lattice plaque
thus avoiding the uncertainties related to identifying defe
from zeros in the order parameter@25#.

We find that the evolution of a typical quench go
through three well defined regimes. The early developmen
dominated by the exponential growth of the order parame
the different modes of the field evolve independently, a
the field remains Gaussian. In this regime, the Halpe
Mazenko-Liu~HML ! prediction for the defect density is ver
accurate. This regime ends when the order parameter rea
about a tenth of its equilibrium value.

The second regime is a transitional epoch dominated
the actual formation of the defects. During this transition
epoch, the field departs from Gaussianity in a signific
way, but the HML prediction is still a good approximation
the actual density. Finally, in the late time regime both
Gaussian approximation for the order parameter and
HML prediction are unreliable.

We may therefore conclude that, as argued by Karra
Rivers @3#, the HML prediction holds early in the develop
ment of the phase transition, being a very accurate estim
of the actual density until the time the defects may be c
sidered as definitely formed, which is also the time when
order parameter reaches about half of its equilibrium value
is therefore a suitable means to estimate the initial conditi
for the subsequent evolution of the defect network, as de
mined by defect-defect interactions and changes in the e
ronment, such as the expansion of the Universe in cos
logical applications @8#. Our results validate previou
analyses of nonequilibrium defect formation, such as R
@1–3,16#.

The paper is organized as follows. Section II introduc
the theoretical prediction of the defect density for a Gauss
quench. Section III shows the time-dependent Ginzbu
Landau model, and the numerical details related to its imp
mentation. Section IV describes the resulting quenches
the conclusions, and the paper ends with some final rema

II. THEORETICAL PREDICTION

At a qualitative level, the formation of topological defec
is well understood through the symmetry breaking mec
nism. For a complex scalar field, the true ground-state m
fold of the field isS1, and the phase of the field at differe
points can be different. If eventually the winding number
the field along a closed loop is not zero, then topologi
defects are trapped inside. Because of topological consi
ations, isolated defects at low temperature are stable
though defects may interact with each other and annihil
migrate to the boundaries of the system, or, in cosmolo
decay through gravitational radiation.
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We are searching for the monopoles of one complex or
parameter fieldF in two dimensions. This will be identified
with the zeros of the field with a nontrivial winding numbe
If they are located atx1 ,x2 ,x3 , . . . , weobtain for the total
and topological densities

r̄~x!5(
i

d~x2xi !,

~1!
r~x!5(

i
nid~x2xi !,

whereni is the winding number of each defect, i.e., its top
logical charge.

The total density of defects is obtained through the re
tion between zeros of the field and the field itself, i.e., t
Jacobian@3#

n̄~ t !5^r̄~x!&5E DFpt@F#d2@F#ue jk] jF1~x!]kF2~x!u,

~2!

with e1252e2151 ~otherwise zero! and F5(F1

1 iF2)/A2, pt being the probability density of the differen
field configurations.

For the Gaussian model we havêFa(x)&50
5^Fa(x)] jFb(x)&. Assuming also that the equal-tim
Wightman function ^Fa(x)Fb(y)&5Wab(ux2yu;t)
5dabW (ux2yu;t) is the only nonvanishing correlatio
function and is diagonal, then@1,2#

n̄~ t !5
1

2p
„2 f 9~0;t !…, ~3!

where

f ~r ;t !5
W~r ;t !

W~0;t !
, ~4!

and derivatives are taken with respect tor.
To compute the right-hand side of Eq.~3!, we consider

the Fourier transform of the field, F̃(k)
5*dx exp(ik–x)F(x), in order to obtain

f 9~0;t !52

E dk k2uF̃~k!u2

E dkuF̃~k!u2
. ~5!

Our goal is to test the range of validity of the relation~3! by
measuring both sides of this equation independently.

III. MODEL

A. Theory

The time-dependent Ginzburg-Landau equation descr
the time-space dependence of the order parameter of a s
conductor@20#. Normalized in the form adopted by Hu an
Thompson, it reads@21–23#
1

D F ]

]t
1 i

2e

\
cGD1j~T!22~ uDu221!D1F“i 2

2e

\c
AG2

D2 f ~r ,t !50, ~6!
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where

j5sF2“c2
1

c

]A

]t G1ReFD* F“i 2
2e

\c
AGDG \c2

8pel~T!2
,

~7!

r5
c2w

4plTF
2

. ~8!

With the Maxwell equations coupling the electromagne
potentials to charge and current densities, they provide a
set of evolution equations. HereD is the normal-state diffu-
sion constant,s is the normal-state conductivity given b
s5(c2j2/48pl2)(1/D), andr and j are the charge and cur
rent densities.f is a finite temperature random driving forc
since we shall consider a quench to zero temperature, it
eventually be set to zero~see below!. Furthermore, the orde
parameter is divided by its equilibrium valueD`
ec
n

ri
ll

ill

5pkA2(Tc
22T2), whereTc is the critical temperature. Note

that this is a temperature-dependent parametrization.
A andw are the vector and scalar potentials, respective

and c is the electrochemical potential divided by the ele
tronic charge. Assumingr50 ~that is, absence of net charg
at the grid scale!, results inc5w ~see Refs.@20,21#!.

This set of equations is invariant under the gauge tra
formation:

A→A2“x,

w→w1
1

c

]x

]t
, ~9!

D→DexpF2 i
2e

\c
xG .

From the microscopic theory, we have the relationships
4pl~T!2s

c2
5

j~T!2

12D
5

p\

96kBTc
S 12

T

Tc
D 21

[
tGL0

12 S 12
T

Tc
D 21

, ~10!
nt
e

s

ward

um
di-

t
In

o-

ob-
where j(T)5j(0)@12(T/Tc)#21/2 and l(T)5l(0)@1
2(T/Tc)#21/2 are the temperature-dependent correlation~co-
herence! length and magnetic penetration depth, resp
tively, and tGL05p\/8kBTc is the characteristic relaxatio
time of the uniform mode at zero temperature.

We can write our model in terms of dimensionless va
ables as follows@24#:

t→tt0 with t05
p\

96kBTc
5

tGL0

12
,

r→r j~0!,

A→A
F0

2pj~0!
with F05

hc

2e
,

w→w
F0

2pct0
, ~11!

j→ j
cF0

8p2j~0!
,

f→ f j~0!2,

T→TTc

to obtain@20–23#

]

]t
D1 iwn52

1

12
@~ i“1A!2n1~12T!~ uDu221!D2 f #,

]

]t
A1“w5~12T!Re@D* ~2 i“2A!D#2k2

“3~“3A!,

~12!
-

-

where k5l(T)/j(T) is the temperature-independe
Ginzburg-Landau~GL! parameter which characterizes th
superconductor. For a type-II superconductor we havek
.1/A2. We have chosenk5A2. The gauge freedom allow
us to choosew[0.

Since we are interested in instantaneous quenches to
zero temperature, we setT50 and f 50 @26#. Furthermore,
we must prepare the system in some thermal equilibri
configuration. This means generating a set of initial con
tions corresponding to a thermal distribution of modes@21#,

^D̃~k!&50,
~13!

^D̃~k!D̃~0!&5
1

V

2m*

\2

kBT

k211/j~T!2
,

with a cutoff whenk'j0
21 beyond which GL theory is no

valid. Herem* 52me is the mass of the coupled electrons.
terms of dimensionless variables,

^uD̃~k!u2&5
m

V

T

k21j22
with m5

2kBTcm* j~0!

\2
.

~14!

The factorm is clearly substance dependent and will be ch
sen later on.

B. Implementation

The discrete version of the gauge transformation is
tained through

Am
j →Am

j 2
„x j 1m2x j )

am
,

~15!D j→D j exp@2 ix j #,
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wherem stands for a direction andj for a site in the lattice. In
order to obtain a discrete version of Eq.~12!, invariant under
Eq. ~15!, we employ the usual link variables technique fro
lattice QCD@7# as in Ref.@24#:

Um
r 1r 25expF2 i E

r 1

r 2
AmdmG

→discretizedUm
j , j 1m

5exp@2 iAm
j am#. ~16!

The differential operators become

F1

i

]

]xm
2AmGD→2 i

Um
j 1m, jD j 1m2D j

am
, ~17!

F1

i

]

]xm
2AmG2

D→
Um

j 1m, jD j 1m22D j1Um
j 2m, jD j 2m

am
2

,

~18!

and the finite difference equations to solve are (D j5r jeiu j
)

ReḊ j5
1

12F ~r j 1x cos~2Ax
j ax1u j 1x!22 ReD j

1r j 2x cos~Ax
j 2xax1u j 2x!!

1

ax
2

1•••2~12T!

3~r j 221!ReD j G ~19!

for the real part of the order parameter field, and

Ȧx
j 5~12T!r jr j 1x sin~2axAx

j 2u j1u j 1x!
1

ax

2k2FAy
j 1x1y2Ay

j 1y2Ay
j 1x1Ay

j

axay
2

Ax
j 1y22Ax

j 1Ax
j 2y

ayay
G

~20!

for the x component of the gauge field. We choose here
work directly with the fields, but alternatively link variable
can be used@24#.

We evolve this equation with a simple Euler scheme, t
ing time steps empirically chosen to beh5t0/128 @t0 being
the time scale defined in Eq.~11!#, and imposing periodic
boundary conditions. The choice of the time step is v
critical because of the very different and variable time sca
involved in this kind of simulation.

We tested grids ofN2 sites, withN5128, 256, and 512. It
is convenient to employ larger grids, not only because of l
granularity in the observed density, but also because
possible to achieve sufficient statistics with fewer runs
ensemble. We have made about 20 runs for each ensem
which means that the dispersions of field and defect den
are in the;3% level. We choose the net parametersax
5ay5j0/2, in order to resolve adequately the shape of
defects, which are expected to have a final sized'j0.

The initial conditions were set in two different ways. W
obtain a thermal distribution of modes, employing expr
o

-

y
s

s
is
r
le,

ty

e

-

sion ~14! as the dispersion of a Gaussian distribution of t
mode amplitudes, withj5j0/2, that is a temperature equa
to five timesTc . The cutoff was set up at the maximum
radius in k space, i.e.,kmax52p/j0. The results are cutoff
independent, in any case, due to the rapid decay of the sh
wavelength modes in the first steps of the quench. At the
of the quench, these modes grow again in order to define
final shape of the defects. Following Ref.@24#, we testedm
51022,1023,1024, and 1025.

Alternatively, we started the field by choosing uniform
at random the phase of the order parameter between 0
2p, and its modulus between 0 andr51024 ~in one set of
simulations! or between 0 andr51026 ~in another set!. As
expected, the results obtained are mostly independent of
the initial conditions are set@27#.

C. Numerical experiments

The presence of topological defects~or candidate ones! in
the fieldD(x) can be determined from the fact that for an
closed curveC we have

R
C
dx•“u~x!52pnC , ~21!

whereD(x)5r(x)exp@iu(x)#, andnC is the total topological
charge of the defects inside the curve. By candidate topol
cal defects we mean those who have a net circulation of
phase, but not the equilibrium profile. That is, we have
phase defect, but the modulus is still evolving.

The presence of a vortex can be observed through exp
sion ~21!. Numerically, we will sum the shortest differenc
of the phase of the order parameter field along the lines
tween nodes of the grid surrounding each plaquette. Le
call

s~a,b!5b2a,

i f ~s.p!s5s22p, ~22!

i f ~s,2p!s5s12p.

So, four neighbor sitesi , j ,k, and l; oriented counterclock-
wise, will yield

v5
1

2p
„s~u j ,u i !1s~uk,u j !1s~u l ,uk!1s~u i ,u l !…561,0.

~23!

This device can only measure vorticityuvu<1. So we
cannot detect a pair vortex-antivortex laying in a sing
plaquette, nor vortexes with greater vorticity. But this
enough, given the mutual annihilation of very close vortex
and the almost absolute absence of higher vorticity, wh
can be seen in the representation of the phase of the o
parameter field. By the way, periodic boundary conditio
provide a test of the accuracy of the observation, because
net vorticity must vanish. Higher sensitivity devices can
implemented considering higher plaquettes, which me
more surrounding sites.

The reciprocal representation of the field is obtain
through the usual fast Fourier transform@28#. In two dimen-
sions this gives a discrete representation ofD̃(k) at sitesk
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FIG. 1. Ensemble average of the absolu
value of the order parameter field^uDu&, the HML
prediction nt for the defect density, the magni
tude 1/(4pj2) @wherej is the correlation length
measured from a fit of the long-wavelength pa
of the correlation function, as in Eq.~26!#, and
the observed defect densityno , all as functions
of time. This run corresponds tom51024 and
T52. Initially j differs from both the predicted
and observed densities, but the rise of the gau
field smears out this difference. While the grap
of ^uDu& changes concavity att50, this is not
easily appreciated due to the distortion caused
the linear-logarithmic scales. The same curve
plotted in linear-linear scales in Fig. 3.
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5(n,m)(2p/Na) with n,m52N/2, . . . ,(N/2)21, anda is
the net parameter supposed equal in both directions. W
our discretization,k5(n,m)(4p/Nj0), and the domain of
the reciprocal representation embodies the circlek,2p/j0,
as well as a number of higher modes.

The various mean values of the field can be obtained
ily in each time step, since the space and ensemble ave
commute. On the other hand, the power spectrum requ
saving each run for further processing.

In order to try to measure the correlation length, we co
sider thek2 dependence of the ensemble dispersiongk

2 of the
amplitude of thekth mode:

gk
25^uD̃~k!u2&. ~24!

For a thermal distribution this is a straight line,

1

gk
2

5
k21j22

m
. ~25!

We can estimatem/gk→j22 whenk2→0, through a lin-
ear fit of the ensemble media of the spectra. This is a ro
estimate, but gives a qualitative description of the behav
of the correlation length.

A better determination of the correlation length can
obtained from the out of equilibrium distribution of mode
@19# ~see below!. At long wavelengthsk2,j22,

gk
2'he2j2k2

. ~26!

This factor can also be measured from a linear fit, and
system quickly reaches this regime.

IV. RESULTS

A. Anatomy of a quench

Figure 1 shows a typical evolution of a quench. We ha
plotted the ensemble average of the absolute value of
order parameter field̂uDu&, the HML predictionnt for the
defect density, the magnitude 1/(4pj2) @wherej is the cor-
relation length measured form a fit of the long-wavelen
th
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part of the correlation function, as in Eq.~26!#, and the ob-
served defect densityno , all as functions of time. This run
corresponds tom51024 andT52. We have chosent50 as
the point where the second derivative of the order param
changes sign.

Figure 2 showŝ uDu&, nt , and no for all six ensembles
tested. The time scales are shifted in order to make all
inflection points of^uDu& coincide. We can see that the b
havior of each ensemble is essentially the same.

Once the simulation begins, the gauge field~initially null !
adjusts itself in order to follow the order parameter fie
reacting back on it. This is what can be expected from
very different time scales involved in Eqs.~19! and~20!, and
it appears in the graph as the initial decay of the order
rameter field. The observed discrepancy between predi
and observed defect densities is quickly smeared out by
evolution of the field. Actually neither of them is reliable th
early in the simulation, since the prescribed thermal distri
tion has too much power at short wavelengths, which can
eliminated with a cutoff. Furthermore the algorithm to ide
tify defects is blind to higher vorticity monopoles. Both e
rors are quickly self-corrected, however, as the density
defects decays and the distribution of modes become
Gaussian function, as in Eq.~26!. This Gaussianity should
not be confused with that of the ensemble, but just refers
the shape ofg(k)2.

The first stage of the quench~once the transient is over! is
characterized by the exponential grow of the order param
field, which can be parametrized empirically as^uDu&
52e0.159t21'2e(t/2p)21 ~the dashed line in Fig. 2!, wheret
is the synchronized time. While this is to be expected fro
the growth of the spinodal instability, it must be observ
that we are already beyond the linear regime at this sta
This is the regime where the HML prediction is essentia
exact. The ensemble probability density of the field is clea
Gaussian, as can be tested by the ratio^uDu4&^uDu2&22. In
fact, for a Gaussian ensemble, considering only diago
terms of the correlation, we have^uDu4&52^uDu2&2. We have
plotted this ratio vs time, in Fig. 3, together with the rat
nt /no and ^uDu&. The plot represents the average of the
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FIG. 2. ^uDu&, nt , and no for all six en-
sembles. All ensembles has been synchronize
the inflection points of the curveŝuDu&. Also
represented are the defect densities predicted
observed.
th
T
s
th
a
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d.
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,
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ter
ect
uc-
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ter
ap-
quantities over all six ensembles; the dotted lines around
first two represent the dispersion between ensembles.
dashed lines around the plot of the order parameter repre
the empirical fit to an exponential, and the tangent at
inflection point. When the growth of the average order p
rameter ceases to be exponential~aroundt;250; see Fig.
4!, we enter a transition regime where first the Gaussianit
the ensemble, and then the HML prediction cease to hol

In the final stage, fromt;25 on, the approach to th
equilibrium value is also exponential, as can be apprecia
in Fig. 4, where we have plotted the time derivative of^uDu&,
with linear-logarithmic scales. In this final stage, the exp
nential behavior of the field is}12e20.134t, and the topo-
logical defects have attained almost their stable profiles~see
below!.

We can see that, as long as the ensemble is Gaussian
HML prediction is exact for all practical purposes. Aroun
e
he
ent
e
-

f

d

-

the

t;230, both Gaussianity and the exponential growth of
order parameter break down; however, the HML estimate
still a good approximation until later times,t;210.

B. Evolution of the structure function

The two main regimes in the evolution of the quench, t
early one dominated by the growth of the order parame
and the late one dominated by the evolution of the def
network, are also clearly seen in the evolution of the str
ture function, namely, the Fourier transform of the equ
time order parameter correlation function~for the structure
function in systems with global symmetry, see Ref.@29#!.

At early times and long wavelengths, the order parame
and the gauge field are essentially decoupled. Under this
proximation, the dynamical equation@Eq. ~12!# becomes
r all
rst
les.
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ld
FIG. 3. ^uDu4&^uDu2&22, as a function of time,
together with the rationt /no and^uDu&. The plot
represents the average of these quantities ove
six ensembles; the dotted lines around the fi
two represent the dispersion between ensemb
The dashed lines around the plot of the order p
rameter represent the empirical fit to an expone
tial, and the tangent at the inflection point. Th
ratios show that the predicted and observed
fect densities agree very well even when the fie
distribution ceases to be Gaussian.
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FIG. 4. Time derivative of̂ uDu&; there is no
symmetry at all between both sides of the infle
tion point.
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1

12
@¹2D1D#. ~27!

Assuming that each mode has a random initial phase,
theoretical prediction for the structure function at early tim
and long wavelengths is

gk
2;expH S t

6D @12k2#J . ~28!

In particular, the correlation length, determined from t
scaling conditiongk

2; f (jk), grows asAt. In Fig. 5 we plot
the correlation length squared as a function of time for e
ensemble; the result clearly agree with expectations. In
regime calculation~5! reduces tont'1/4pj2, which, as we
have seen, agrees very well with the observed density.
he
s

h
is

For later times and wavelengths shorter than the aver
defect separation, the structure function is dominated by
profile of an isolated defect. The Abrikosov-Gorkov vorte
centrated at the origin is given by

D;~12e2r /r 1!eiu, ~29!

wherer 1 is the characteristic size of the defect. The Four
transform of this shape gives

D̃k;
2p

k2
@12~11r 1

22k22!23/2#e2 ik–x0, ~30!

with x0 the position of the defect. Considering short wav
lengths, as compared to the average defect separation
obtain
c-
r

d.
in

e

FIG. 5. Correlation length squared as a fun
tion of time for each ensemble. The initial linea
growth of j2 stops simultaneously with the slow
down in the growth of the order parameter fiel
These curves agree very well when represented
simulation time, rather than shifting time to mak
the inflection points coincide.
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FIG. 6. Power spectra measured for the e
semble r51026 at equally spaced differen
times, as a function ofj0

2k2, for random initial
conditions andr51026; the vertical scale is
logarithmic. The first bold curve corresponds
the time at which the spectrum leaves the beh

ior gk
2'he2j2(k221). The second corresponds t

the inflection time. The inset shows the growth
short-wavelength modes needed for the fin
shape of the defects.
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gk
2;uD̃ku2no , ~31!

whereno is the observed density of defects. By constructi
a grid cannot support singularities like that at the origin
Eq. ~29!, but the power law characteristic of Eq.~31! is the
kind of spectrum we hope to find in the final regime of t
quench.

Figure 6 displays the evolution of the structure functi
~plotted every ten time units! as a function ofj0

2k2, for ran-
dom initial conditions andr51026; the vertical scale is
logarithmic. The early plots clearly display the Gaussian
havior predicted by Eq.~28!. After t5250 ~bold line! the
short-wavelength modes begin to grow beyond the early t
prediction. The second bold line represents the struc
function at t;0, that is, the beginning of the late time r
gime. The inset shows the same plot, for a wider range
wave number. Figure 7 shows the same for the thermal in
conditions, andm51024. The same behavior is obtaine
,
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and it is remarkable that the value ofgk
2 for kj051 remains

constant over the early time regime.
In Fig. 8, we contrast three of the structure functio

shown in Fig. 7~corresponding to timest550, 70, and 340!
with the structure function of an isolated defect, as given
Eqs.~30! and~31!, given by the solid line. For visual effect
we have overestimated slightly the value ofno in Eq. ~31!.
We have setr 151, as predicted by theory.

C. Epoch of defect formation

Candidate defects exist from the very beginning of t
quench, as can be detected from the phase of the orde
rameter field, and predicted by the HML formula. It is th
development of a well-defined vortex and the pattern of
percurrents around it which makes the system leave
Gaussian distribution. The exponential growth slows do
as soon as the modes stop behaving almost independ
(t;230). The formation of the shape of the vortex itself
also starting at this time.
-
es
of
FIG. 7. Power spectra for the ensemblem
51024. Note the initial decay of the short
wavelength modes. At late times these mod
grow again, and for this ensemble the shape
the vortex almost reaches its equilibrium form.
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FIG. 8. Detail of the previous figure. The
solid curve correspond to g@x21

„12(1
1x)23/2

…#2 @see Eq.~30!#, and the factorg is
approximately equal to the final density of de
fects. Only the modes corresponding to the ma
mum circle in reciprocal space are depicte
(k2j0

2,4p2).
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We may follow the formation of the vortexes through t
evolution of the ‘‘kinetic’’ free energy@30#

K5
1

VE d2x u~2 i“2A!Du2

5
1

VE d2x $u“ru21r2u“u2Au2%, ~32!

whereD5reiu, and the last term corresponds to the sup
currents. InitiallyK is very low, and starts building up with
the steeping of the field gradients around the candidate
fects. When the defect attains its final shape, both“r and
the current die out outside the core, but there is a core c
tribution left, and soK reaches a final value which is propo
tional to the defect density. The subsequent evolution oK
simply follows the slow decay of the defect density due
defect-defect annihilation.

Figure 9 shows the ensemble average ofK/no ~also aver-
r-

e-

n-

aged over the six ensembles considered! as a function of
time. For comparison purposes we also showg^uDu& ~dashed
line!, whereg54.82 is the asymptotic value ofK/no . At
time t;70 the final shape and current has been reached,
the tiny fluctuations are due to transients corresponding
vortex annihilation. A remarkable implication of Fig. 9
that defect formation occurs at a relatively well defined e
och, fromt;230 to 40.

D. Final remarks

This paper attempts to answer the question of how r
able are estimates of the defect density based on the app
mation of Gaussian ensembles as applied to nonlinear p
transitions. To this effect, we have independently measu
the Gaussian prediction and the actual defect density a
function of time after an instantaneous quench to zero te
perature in a two-dimensional superconductor. The evolu
of the quench goes through three stages: an initial one do
e

ect
FIG. 9. Ensemble average ofK/no ~also aver-
aged over the six ensembles considered! as a
function of time. For comparison purposes w
also showg^uDu& ~dashed line!, whereg54.82 is
the asymptotic value ofK/no , showing the final
average between the kinetic term and the def
density.
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nated by the unfolding of the spinodal instability, a final o
dominated by defect-defect interactions, and a transitio
stage when most defects are actually formed.

We find that the Gaussian estimate is essentially ex
over the early regime, and continues to be accurate almo
the end of the epoch of defect formation. This moment
time is marked by the jump in the ‘‘kinetic’’ energyK @see
Eq. ~32!#; it is also the time when the order parame
reaches about half of its equilibrium value. While the Gau
ian estimate itself is not reliable beyond this point, it is stil
valid tool to fix the initial conditions of the defect network
whose subsequent evolution must be investigated by o
means~like those in this paper, or in Ref.@8#!.

These results confirm theoretical expectations, but i
nevertheless satisfactory to have solid numerical proof
formerly theoretical conjectures. The very detailed view
the process of defect formation which is afforded by o
simulations should also be valuable in investigating m
t
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subtle processes, such as preheating during the nonequ
rium phase transition@31# or instabilities due to strong field
effects @32#. Also, by doing a more complete simulation
where we could also control the quench rate, it ought to
possible to investigate Zurek and co-workers conject
about the scaling of the defect density with the quench r
@10,11,14#. Finally, it is of interest to perform simulations i
regions of parameter space approaching actual experime
contexts. We continue our research in these manyfold di
tions.
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