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Counting defects in an instantaneous quench
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We consider the formation of defects in a nonequilibrium second-order phase transition induced by an
instantaneous quench to zero temperature in a type Il superconductor. We perform a full nonlinear simulation
where we follow the evolution in time of the local order parameter field. We determine how far into the phase
transition theoretical estimates of the defect density based on the Gaussian approximation yield a reliable
prediction for the actual density. We also characterize quantitatively some aspects of the out of equilibrium
phase transition.S1063-651X99)09408-§

PACS numbsgs): 05.70.Fh, 11.27:-d, 11.10.Wx, 67.40.Vs

I. INTRODUCTION of the dynamics. As a matter of fact, there is a rigorous result

linking the density of defects to the equal time correlation

The objective of this paper is to study the formation of function for the order parameter, valid whenever the field
defects in a nonequilibrium second-order phase transition bprobability distribution is Gaussiaft,2]. Under the Gauss-

means of a numerical solution of the full dynamical equa-" approximation, then, finding the density of defects is re-

tions, and to compare the results with theoretical prediction ?tj]c?r%igoags)glr\ggghthvih?gr?ﬁ?sl,cr?acfg:]ttlgebggr:rﬁgg)?ofgr?c?\s:/()'crr]]e
to be found in the I|ter_aturE1—3]. Topolog|ca_l defects are a validity of Zurek and co-workers estimates in a quantum
common occurrence in symmetry broken field theofigls

: . ; field theoretic mode[16], is usually though to be correct
with far reaching consequences in condensed matter physué%my in the development of the phase transifi.

[5], particle physicd6,7], and cosmology8]. The equilib- In order to evaluate how reliable this kind of argument
rium structure of defects is deeply rooted in the topologlc_alrea”y is, therefore, we must know how far in the phase tran-
aspects of the theory, and is well understood. The dynamicafition the Gaussian approximation may be trusted. Since the
formation of defects in the process of a nonequilibrium phasgjevelopment of the phase transition is an essentially nonlin-
transition, on the other hand, only recently has been the sulzar process, we must expect that non-Gaussian correlations
ject of a systematic analysis. will be created by the dynamics itself, even if suppressed in
The issue at stake is how many defects are to be formethe initial conditions. There will be a competition between
as a function of both the dynamics of the system and thehe characteristic growth time due to the spinodal instability
macroscopic parameters characterizing the transition, such 888,19, and a variety of dynamical times describing the
cooling rates. A simple, order of magnitude, estimate isbuilding of correlations through nonlinear interaction of fluc-
based on the observation that once the system is coldations; however, the usual Gaussian models do not give us
enough, defects will be unable either to form or disappea clue about what the latter might be. _
through thermal activation, so they will be essentially frozen ~ The objective of this paper is to give a tentative answer to
into existence. This happens at the so-called Ginzburg tenfhe question of the reliability of defect density estimates
perature, and leads to the prediction that the typical distanc@sed on the Gaussian approximation, by presenting a fully

between defects is of the order of magnitude of the correlad@nlinéar simulation of a phase transition where we have
tion length at this temperatufé]. measured the Gaussianity of the order parameter, the Gauss-

This picture of defect dynamics has been criticized byian prediction for the density of defects, and the actual den-

Zurek and co-workers as downplaying the nonequiIibriumsity, as functions of time. Of course, as long as the field is

: actually Gaussian, the rigorous analytic prediction for the
features of the proce440,11]. According to these authors, defect density is validated. The nontrivial issue is how long

the freezing of defectg occurs at a much higher temperaturEe field probability density remains Gaussian, and whether
when the relaxation time of the system becomes large anfe Gayssian prediction continues to hold beyond that point.
the system effectively decouples from its environment. The'rConcreter, we find that even when Gaussianity of the en-
arguments usually lead to higher defect densities than foungdample ceases to hold, the prediction remains valid, to break
previously, a prediction confirmed by some experimentsjown about the time defects are definitely formed.
[12,13 (see, however, Ref14]). They are also supported by our simulations follow the unfolding of an instantaneous
numerical simulations in one- and two-dimensionalquench to zero temperature in a two-dimensional type-Il su-
Ginzburg-Landau systems with broken global symmetrieperconductor, described by the time-dependent Landau-
[15]. Ginzburg equations derived by Gor’kov and Eliashbie2@]
Complementary to the search for a qualitative understandsee also Ref§21—24). This model is a scalar field theory
ing of defect formation, some authors have attempted to denteracting with a W1) gauge field(see Ref[11]), but with
rive the density of defects from a first-principles descriptionthe presence of a normal current, in addition to the supercur-
rent, and a first ordefrather than second onequation for
the vector potential (see below.
*Electronic address: ivan@df.uba.ar In order to perform the simulations, we have discretized
"Electronic address: calzetta@df.uba.ar the model and placed it on a square lattice, with periodic
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boundary conditions. Our discrete model still has gauge sym- We are searching for the monopoles of one complex order
metry, which is preserved by the evolution. We have furtheiparameter fieldb in two dimensions. This will be identified
considered a variety of lattice sizes and initial conditions,with the zeros of the field with a nontrivial winding number.
thus making sure that our results truly reflect the physics off they are located ax;,x,,X3, . .., weobtain for the total
the system. We have identified defects by measuring thand topological densities

winding number of the field around each lattice plaquette,

thus avoiding the uncertainties related to identifying defects p(x)=2 S(X—X;),
from zeros in the order parame{&5]. i

We find that the evolution of a typical quench goes (1)
through three well defined regimes. The early development is p(X)= Z N 8(X—X;),

dominated by the exponential growth of the order parameter;

the different modes of the field evolve independently, andyheren; is the winding number of each defect, i.e., its topo-
the field remains Gaussian. In this regime, the Halperiniggical charge.
Mazenko-Liu(HML) prediction for the defect density is very  “The total density of defects is obtained through the rela-

accurate. This regime ends when the order parameter reach@sn petween zeros of the field and the field itself, i.e., the
about a tenth of its equilibrium value. Jacobiar{3]

The second regime is a transitional epoch dominated by
the actual formation of the defects. During this transitional F(t)=(;(x)>=f DO D] D]| €jyd;P1(X) 4P o(X)],
epoch, the field departs from Gaussianity in a significant
way, but the HML prediction is still a good approximation to 2
the actual density. Finally, in the late time regime both theiiy €1,= —ex=1 (otherwise zerp and ®=(d,
Gaussian approximation for the order parameter and th@riCDZ)/\/f
HML prediction are unreliable. I
We may therefore conclude that, as argued by Karra an For the Gaussian model we havéd,(x))=0

Rivers[3], the HML prediction holds early in the develop- = (,(x)d;Dp(x)). Assuming also that the equal-time

ment of the phase transition, being a very accurate estimate,. : _ -
of the actual density until the time the defects may be congﬁhghtmaln function  (®4(x) Pp(y)) =Way(|x=y1:1)

sidered as definitely formed, which is also the time when the, . 5a”-W (|x—y|;t)_ is the only nonvanishing correlation
i T unction and is diagonal, thed,,2]
order parameter reaches about half of its equilibrium value. |

p; being the probability density of the different
geld configurations.

is therefore a suitable means to estimate the initial conditions nt)= i(_ £7(0:1)) 3)
for the subsequent evolution of the defect network, as deter- 2 T

mined by defect-defect interactions and changes in the envi-

ronment, such as the expansion of the Universe in cosmdvhere

logical applications [8]. Our results validate previous W(r;t)

analyses of nonequilibrium defect formation, such as Refs. f(r;t)= W)’ (4)

[1-3,14.

The paper is organized as follows. Section Il introducesand derivatives are taken with respectto
the theoretical prediction of the defect density for a Gaussian To compute the right-hand side of E¢R), we consider
quench. Section Il shows the time-dependent Ginzburgthe  Fourier transform of the field, (k)
Landau model, and the numerical details related to its imple= 4y exp(k-x)®(x), in order to obtain
mentation. Section IV describes the resulting quenches and
the conclusions, and the paper ends with some final remarks. f dk k2| (k)|

frof)=—>t— (5)

Il. THEORETICAL PREDICTION f dk|a)(k)|2

At a qualitative level, the formation of topological defects

is well understood through the symmetry breaking mechaour goal is to test the range of validity of the relati@ by
nism. For a complex scalar field, the true ground-state manimeasuring both sides of this equation independently.
fold of the field isS1, and the phase of the field at different

points can be different. If eventually the winding number of . MODEL

the field along a closed loop is not zero, then topological

defects are trapped inside. Because of topological consider- A. Theory

ations, isolated defects at low temperature are stable, al- The time-dependent Ginzburg-Landau equation describes
though defects may interact with each other and annihilatehe time-space dependence of the order parameter of a super-
migrate to the boundaries of the system, or, in cosmologyconductor{20]. Normalized in the form adopted by Hu and

decay through gravitational radiation. Thompson, it readf21-23
|
! 2 A+ET) %(|A]P=1)A v ZeAzAf =0 6
Dlat Ti7 ¢ATEM) (JA[P=1)A+ T 7 —f(r,t)=0, (6)
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where =7Tk\/2(TC2—T2), whereT, is the critical temperature. Note

52 that this is a temperature-dependent parametrization.

S — A and ¢ are the vector and scalar potentials, respectively,

8men(T)? and ¢ is the electrochemical potential divided by the elec-
(7)  tronic charge. Assuming=0 (that is, absence of net charge

at the grid scalg results ing= ¢ (see Refs[20,21)).
_ o ®) This set of equations is invariant under the gauge trans-
AmN2e ' formation:

j=o

v 1 9A RA*V 2eAA
Al s T he

p

With the Maxwell equations coupling the electromagnetic A—A—Vy,

potentials to charge and current densities, they provide a full
set of evolution equations. HeE2 is the normal-state diffu-
sion constantg is the normal-state conductivity given by
o= (c?£%/48m\?)(1/D), andp andj are the charge and cur-
rent densitiesf is a finite temperature random driving force;
since we shall consider a quench to zero temperature, it will
eventually be set to zersee below. Furthermore, the order
parameter is divided by its equilibrium value\,

19y

g 9

2e
AHAGX[{_l_

ﬁcX

From the microscopic theory, we have the relationships

4aN(T)%0  &(T)? Wﬁ( T)‘l tG,_O( T)—l
- Y1) 12 '

2 12D 96kgT, T. 1= T.

(10

where &(T)=¢0)[1—(T/T)] Y2 and A(T)=A(0)[1 where «x=\(T)/&T) is the temperature-independent
—(T/T,)] Y2 are the temperature-dependent correlatmm  Ginzburg-Landau(GL) parameter which characterizes the
herencg length and magnetic penetration depth, respecsuperconductor. For a type-ll superconductor we have
tively, andtg o= 7%/8kgT. is the characteristic relaxation >1/2. We have choser= 2. The gauge freedom allows

time of the uniform mode at zero temperature.

We can write our model in terms of dimensionless vari-

ables as followg$24]:

us to choosep=0.

Since we are interested in instantaneous quenches toward
zero temperature, we s&t=0 andf=0 [26]. Furthermore,
we must prepare the system in some thermal equilibrium

t—tt, with to:_ﬂi - tGﬂ configuration. This means generating a set of initial condi-
96kgT, 12° tions corresponding to a thermal distribution of mo{2%|,
r—ré0), (A(k)=0,
13
o h @ R(k)E(0)— - 2M _ KeT v
AAzre) " PoToe (BHORO=G 2 e e
D, with a cutoff whenkwggl beyond which GL theory is not
Pl ot 1) yvalid. Herem* = 2m, is the mass of the coupled electrons. In
terms of dimensionless variables,
P o i T 2keTm*(0)
87725(0) <| ( )| >_vk2+§_2 with u= —ﬁZ .
14)
f—1£(0)2, (
The factoru is clearly substance dependent and will be cho-
T—TT. sen later on.

to obtain[20-23

J ; _ 1. 2 2
A tipA=—[(VHA2A+(1-T)(AP-1)A~f],

%A%—V(p:(1—T)Re[A*(—iV—A)A]—KZVX(VXA),

(12

B. Implementation

The discrete version of the gauge transformation is ob-
tained through

N i
w P a, '

Al Al ex —ix], (15



3002 D. IBACETA AND E. CALZETTA PRE 60

whereu stands for a direction arjdor a site in the lattice. In  sion (14) as the dispersion of a Gaussian distribution of the
order to obtain a discrete version of E@2), invariant under mode amplitudes, witk= &,/2, that is a temperature equal
Eq. (15), we employ the usual link variables technique fromto five timesT.. The cutoff was set up at the maximum
lattice QCD[7] as in Ref.[24]: radius ink space, i.e.Knax=27&. The results are cutoff

0 independent, in any case, due to the rapid decay of the short-

ULerZGXF{ —i f A, du wavelength modes in the first steps of the quench. At the end
M
—discretizedJ);) " #

of the quench, these modes grow again in order to define the
final shape of the defects. Following RE24], we testedu
=10"2,10 3,10 %, and 10°°.

=exp[—iALaM]. (16) Alternatively, we started the field by choosing uniformly
at random the phase of the order parameter between 0 and
The differential operators become 27, and its modulus between 0 ape=10* (in one set of
IR IN TN simulations or between 0 ang=10"° (in another sét As
E i—A A —i U, alme—A (17) expected, the results obtained are mostly independent of how
iox, * a, ' the initial conditions are s¢R7].
i i
Ei_ ? - UJM " JAHM_ZALFUJM mialme C. Numerical experiments
i 13 2 ! . . .
b oXy a, The presence of topological defe¢ts candidate ongsn

(18 the field A(x) can be determined from the fact that for any

o closed curveC we have
and the finite difference equations to solve atd= pie'?)

1 _ _ _ _ § dx-Vo(x)=2mnc¢, (21
ReAl=| (p!"* cog — A, + 0" *) —2 ReA! c
whereA (x) = p(x)exdif(x)], andnc is the total topological
. _— . charge of the defects inside the curve. By candidate topologi-
+pl X cog AL a0 )5+ —(1-T) cal defects we mean those who have a net circulation of the
Ax phase, but not the equilibrium profile. That is, we have the
phase defect, but the modulus is still evolving.
X (pl?—1)ReA! (19 The presence of a vortex can be observed through expres-
sion (21). Numerically, we will sum the shortest difference
) of the phase of the order parameter field along the lines be-
for the real part of the order parameter field, and tween nodes of the grid surrounding each plaquette. Let us
1 call
A —(1— J ol X gin — i_ pi j+xy
A=(1-T)p'p " sin(—a,A,— 0+ 6 )aX s(a,B)=B—a,
A=A AT A A2 ALY if (s>m)s=s—2m, (22)

- K

aa a,a .
Xy vy if(s<—m)s=s+2.

(20
] So, four neighbor sites,j,k, andl; oriented counterclock-
for the x component of the gauge field. We choose here tayise, will yield

work directly with the fields, but alternatively link variables .
can be Use@24]. _ i K i | Ak NI
We evolve this equation with a simple Euler scheme, tak- V= ﬂ(s( 6,6)+s(6",6)+s(6,6+s(6',6))==10.
ing time steps empirically chosen to be=t,/128[t, being (23
the time scale defined in Eq11)], and imposing periodic
boundary conditions. The choice of the time step is very This device can only measure vorticify|<1. So we
critical because of the very different and variable time scale§annot detect a pair vortex-antivortex laying in a single
involved in this kind of simulation. plaguette, nor vortexes with greater vorticity. But this is
We tested grids ofi? sites, withN= 128, 256, and 512. It €nough, given the mutual annihilation of very close vortexes
is convenient to employ larger grids, not only because of lesgnd the almost absolute absence of higher vorticity, which
granularity in the observed density, but also because it i§an be seen in the representation of the phase of the order
possible to achieve sufficient statistics with fewer runs forparameter field. By the way, periodic boundary conditions
ensemble. We have made about 20 runs for each ensembRyovide a test of the accuracy of the observation, because the
which means that the dispersions of field and defect densitpet vorticity must vanish. Higher sensitivity devices can be
are in the~3% level. We choose the net parameteys Implemented considering higher plaguettes, which means
=a,=&/2, in order to resolve adequately the shape of thénore surrounding sites. . S .
defects, which are expected to have a final size&,. The reciprocal representation of the field is obtained
The initial conditions were set in two different ways. We through the usual fast Fourier transfof@8]. In two dimen-
obtain a thermal distribution of modes, employing expressions this gives a discrete representatiom\@gk) at sitesk
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<lAl>

FIG. 1. Ensemble average of the absolute
value of the order parameter figlt\ |), the HML
predictionn, for the defect density, the magni-

3 C tude 1/(4r&?) [where¢ is the correlation length

. measured from a fit of the long-wavelength part

n, 3‘10’2 of the correlation function, as in E¢26)], and

3 (nsh’ £ the observed defect density, all as functions

o - of time. This run corresponds toa=10* and

10° T=2. Initially ¢ differs from both the predicted
and observed densities, but the rise of the gauge
field smears out this difference. While the graph

¢ Of (JA]) changes concavity a=0, this is not
easily appreciated due to the distortion caused by
the linear-logarithmic scales. The same curve is
plotted in linear-linear scales in Fig. 3.

-
S
TV

T T T T T T T 1 T T
-150 -100 -50 0 50 100 150 200

=(n,m)(27/Na) with n,m=—N/2, ... ,(N/2)—1, andais part of the correlation function, as in E(6)], and the ob-

the net parameter supposed equal in both directions. Witeerved defect density,, all as functions of time. This run
our discretizationk=(n,m)(4m/N&y), and the domain of corresponds taw=10"% andT=2. We have choset=0 as

the reciprocal representation embodies the cikete /£,  the point where the second derivative of the order parameter
as well as a number of higher modes. changes sign.

The various mean values of the field can be obtained eas- Figure 2 showg|A[), n;, andn, for all six ensembles
ily in each time step, since the space and ensemble averagssted. The time scales are shifted in order to make all the
commute. On the other hand, the power spectrum requireaflection points of(|A|) coincide. We can see that the be-
saving each run for further processing. havior of each ensemble is essentially the same.

In order to try to measure the correlation length, we con- QOnce the simulation begins, the gauge figidtially null)
sider thek? dependence of the ensemble dispersjpof the adjusts itself in order to follow the order parameter field,
amplitude of thek;, mode: reacting back on it. This is what can be expected from the

2 = ) very different time scales involved in Eq4.9) and(20), and
gi=(1A0)[%). 24 appears in the graph as the initial decay of the order pa-
e . . : rameter field. The observed discrepancy between predicted
For a thermal distribution this is a straight line, and observed defect densities is quickly smeared out by the
1 K2+¢&? evolution of the field. Actually neither of them is reliable this
= (25 early in the simulation, since the prescribed thermal distribu-
9k # tion has too much power at short wavelengths, which can be
eliminated with a cutoff. Furthermore the algorithm to iden-
ny defects is blind to higher vorticity monopoles. Both er-

estimate, but gives a qualitative description of the behaviof°'s ar€ quickly self-correc.ted., hc_)wever, as the density of
of the correlation length, defects decays and the distribution of modes becomes a

A better determination of the correlation length can beGa}[ul;ssmn :‘unthlion,'tﬁir:nt EtfﬂZtrf]S). This Ggllussé)latnl'ty tShOfUId t
obtained from the out of equilibrium distribution of modes not be confused wi at ot the ensembie, but just reters to

We can estimateg./g,— ¢~ 2 whenk?®—0, through a lin-

2
_ 2 g2 the shape of(k)-. o _
[19] (see below At long wavelengths®< £, The first stage of the quengbnce the transient is oveis
g§~ he &K, (26) characterized by the exponential grow of the order parameter

field, which can be parametrized empirically &gA|)
This factor can also be measured from a linear fit, and the= 221591~ 2e(2m~1 (the dashed line in Fig.)2wheret

system quickly reaches this regime. is the synchronized time. While this is to be expected from
the growth of the spinodal instability, it must be observed
IV. RESULTS that we are already beyond the linear regime at this stage.

This is the regime where the HML prediction is essentially
exact. The ensemble probability density of the field is clearly
Figure 1 shows a typical evolution of a quench. We haveGaussian, as can be tested by the rdid|*)(|A|?)72. In
plotted the ensemble average of the absolute value of thiact, for a Gaussian ensemble, considering only diagonal
order parameter field|A|), the HML predictionn, for the  terms of the correlation, we hayg|*)=2(|A|?)2. We have
defect density, the magnitude 1/442) [whereé is the cor-  plotted this ratio vs time, in Fig. 3, together with the ratio
relation length measured form a fit of the long-wavelengthn,/n, and (|A|). The plot represents the average of these

A. Anatomy of a quench
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p=10° p=10" , )
o— . a 4 2 / <I|Al> )
10°4 p=107 p=10" p=10°p=10 / = 10
£ 10"
™ = 10° .
FIG. 2. {|A]), n;, and n, for all six en-
" \ sembles. All ensembles has been synchronized at
° 10 the inflection points of the curve§Al). Also
represented are the defect densities predicted and
e 10" observed.
= 10°
E10°
107 : T ———— — —— 107
-200 -150 -100 50 0 50 100 150 200

guantities over all six ensembles; the dotted lines around the~ — 30, both Gaussianity and the exponential growth of the
first two represent the dispersion between ensembles. Therder parameter break down; however, the HML estimate is
dashed lines around the plot of the order parameter represesiill a good approximation until later times;- — 10.
the empirical fit to an exponential, and the tangent at the
inflection point. When the growth of the average order pa-
rameter ceases to be exponentmioundt~ —50; see Fig.
4), we enter a transition regime where first the Gaussianity of
the ensemble, and then the HML prediction cease to hold. ~ The two main regimes in the evolution of the quench, the
In the final stage, fromt~25 on, the approach to the €arly one dominated by the growth of the order parameter
equilibrium value is also exponential, as can be appreciate@nd the late one dominated by the evolution of the defect
in Fig. 4, where we have plotted the time derivative|df|),  network, are also clearly seen in the evolution of the struc-
with linear-logarithmic scales. In this final stage, the expo-ture function, namely, the Fourier transform of the equal
nential behavior of the field iss1—e~%%4, and the topo- time order parameter correlation functigior the structure
logical defects have attained almost their stable profdee  function in systems with global symmetry, see He]).
below). At early times and long wavelengths, the order parameter
We can see that, as long as the ensemble is Gaussian, thed the gauge field are essentially decoupled. Under this ap-
HML prediction is exact for all practical purposes. Around proximation, the dynamical equati¢iq. (12)] becomes

B. Evolution of the structure function

3.0 o

2.5

FIG. 3.(|A|*)(]A]?)~2, as a function of time,
together with the ratim; /n, and{|A|). The plot
represents the average of these quantities over all
six ensembles; the dotted lines around the first
two represent the dispersion between ensembles.
The dashed lines around the plot of the order pa-
rameter represent the empirical fit to an exponen-

2.0

<IAlS/<IA

1.5 A

1.0 e tial, and the tangent at the inflection point. The
| ratios show that the predicted and observed de-
// fect densities agree very well even when the field
0.5 1 05 distribution ceases to be Gaussian.
0.0 L7 0.0
T 1 T T i
-80 -60 -40 20 0 20
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d<lAl>/dt .
=107
é—mz
L 10°
F 100 FIG. 4. Time derivative of|A|); there is no
L o° symmetry at all between both sides of the inflec-
SVa tion point.
\\\ £ 10°
é—m"
£ 10°
e 10°
T T T T T T T 10™
-200 -150 -100 -50 o] 50 100
t
J 1, For later times and wavelengths shorter than the average
A= plViA+A]L (27)  defect separation, the structure function is dominated by the

profile of an isolated defect. The Abrikosov-Gorkov vortex

Assuming that each mode has a random initial phase, th%entrated at the origin is given by

theoretical prediction for the structure function at early times A~(1—e Tr1yelt (29)
and long wavelengths is ’

gﬁ~e><p[

In particular, the correlation length, determined from the Zk~2—77[1—(1+r1_2k‘2)‘3’2]e‘ik‘xo, (30)
scaling conditiong?~ f(£k), grows asyt. In Fig. 5 we plot k?

the correlation length squared as a function of time for each

ensemble; the result clearly agree with expectations. In thisvith X, the position of the defect. Considering short wave-
regime calculation(5) reduces ta,~1/47£2, which, as we lengths, as compared to the average defect separation, we
have seen, agrees very well with the observed density.  obtain

t wherer  is the characteristic size of the defect. The Fourier
5)[1_ kz]]. (28)  transform of this shape gives

30 - 30
107 .
_10* k=10 FIG. 5. Correlation length squared as a func-
p=10
2. . . . ey .
20 S~ 10 ~ 20 tion of time for each ensemble. The initial linear
ust0® S growth of £2 stops simultaneously with the slow
i down in the growth of the order parameter field.
p=10" These curves agree very well when represented in
simulation time, rather than shifting time to make
10 — - 10 the inflection points coincide.
0 . ; [ T | , . 0
200 -150 -100 50 0 50 100
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FIG. 6. Power spectra measured for the en-
semble p=10"% at equally spaced different
times, as a function of3k?, for random initial
conditions andp=10"%; the vertical scale is
logarithmic. The first bold curve corresponds to
the time at which the spectrum leaves the behav-
ior g2~he €(¢~1)_ The second corresponds to
the inflection time. The inset shows the growth of
short-wavelength modes needed for the final
shape of the defects.

92~|A,/2n,, (31  anditis remarkable that the valgegﬁ for k§p=1 remains
constant over the early time regime.
) ) ) In Fig. 8, we contrast three of the structure functions
wheren, is the observed density of defects. By construction,ghown in Fig. 7(corresponding to times=>50, 70, and 340
a grid cannot support singularities like that at the origin inwith the structure function of an isolated defect, as given by
Eqg. (29), but the power law characteristic of E@1) is the  Eqgs.(30) and(31), given by the solid line. For visual effect,
kind of spectrum we hope to find in the final regime of thewe have overestimated slightly the valuerpfin Eq. (31).

quench. We have set,=1, as predicted by theory.
Figure 6 displays the evolution of the structure function
(plotted every ten time unitsas a function o%2k?, for ran- C. Epoch of defect formation
dom initial conditions andp=10"°%; the vertical scale is  Candidate defects exist from the very beginning of the

logarithmic. The early plots clearly display the Gaussian bequench, as can be detected from the phase of the order pa-
havior predicted by Eq(28). After t=—250 (bold line) the  rameter field, and predicted by the HML formula. It is the
short-wavelength modes begin to grow beyond the early timelevelopment of a well-defined vortex and the pattern of su-
prediction. The second bold line represents the structurpercurrents around it which makes the system leave the
function att~0, that is, the beginning of the late time re- Gaussian distribution. The exponential growth slows down
gime. The inset shows the same plot, for a wider range iras soon as the modes stop behaving almost independently
wave number. Figure 7 shows the same for the thermal initia{t~ — 30). The formation of the shape of the vortex itself is
conditions, andu=10 % The same behavior is obtained, also starting at this time.

ez
s

I
0 200,300
0

t=-300 (initial) t=100

10°

=

FIG. 7. Power spectra for the ensembhle
=10"* Note the initial decay of the short-
wavelength modes. At late times these modes
grow again, and for this ensemble the shape of
the vortex almost reaches its equilibrium form.
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FIG. 8. Detail of the previous figure. The
solid curve correspond to y[x (1—(1
+x) %912 [see Eq.(30)], and the factory is
approximately equal to the final density of de-
fects. Only the modes corresponding to the maxi-
mum circle in reciprocal space are depicted
(k?¢2<4m?).

-4

10y

10%

We may follow the formation of the vortexes through the aged over the six ensembles considg¢rad a function of

evolution of the “kinetic” free energy30] time. For comparison purposes we also shaA |) (dashed
1 line), where y=4.82 is the asymptotic value d€/n,. At
K= _J d2 |(—iV—A)A|? time t~70 the final shape and current has been reached, and
v the tiny fluctuations are due to transients corresponding to

1 vortex annihilation. A remarkable implication of Fig. 9 is
:—f d® {|Vp|?+p?|Vo—A|?}, (32)  that defect formation occurs at a relatively well defined ep-
v och, fromt~ —30 to 40.

whereA=pe'?, and the last term corresponds to the super-
currents. InitiallyK is very low, and starts building up with
the steeping of the field gradients around the candidate de- This paper attempts to answer the question of how reli-
fects. When the defect attains its final shape, B8ghand able are estimates of the defect density based on the approxi-
the current die out outside the core, but there is a core comation of Gaussian ensembles as applied to nonlinear phase
tribution left, and sK reaches a final value which is propor- transitions. To this effect, we have independently measured
tional to the defect density. The subsequent evolutioiK of the Gaussian prediction and the actual defect density as a
simply follows the slow decay of the defect density due tofunction of time after an instantaneous quench to zero tem-
defect-defect annihilation. perature in a two-dimensional superconductor. The evolution
Figure 9 shows the ensemble averag&of, (also aver-  of the quench goes through three stages: an initial one domi-

D. Final remarks

FIG. 9. Ensemble average Kfn, (also aver-
aged over the six ensembles considgred a
function of time. For comparison purposes we
also showy(|A|) (dashed ling wherey=4.82 is
the asymptotic value dk/n,, showing the final
average between the kinetic term and the defect
density.
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nated by the unfolding of the spinodal instability, a final onesubtle processes, such as preheating during the nonequilib-
dominated by defect-defect interactions, and a transitionafium phase transitioh31] or instabilities due to strong field
stage when most defects are actually formed. effects [32]. Also, by doing a more complete simulation,
We find that the Gaussian estimate is essentially exacihere we could also control the quench rate, it ought to be
over the early regime, and continues to be accurate almost {fossible to investigate Zurek and co-workers conjecture
the end of the epoch of defect formation. This moment ingpout the scaling of the defect density with the quench rate
time is marked by the jump in the “kinetic” enerdg [see  [10,11,14. Finally, it is of interest to perform simulations in
Eg. (32)]; it is also the time when the order parameterregions of parameter space approaching actual experimental

reaches about half of its equilibrium value. While the Gausszontexts. We continue our research in these manyfold direc-
ian estimate itself is not reliable beyond this point, it is still atjgns.

valid tool to fix the initial conditions of the defect network,
whose subsequent evolution must be investigated by other
means(like those in this paper, or in Ref8]). ACKNOWLEDGMENTS
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